مقایسه مدل های شبکه عصبی مصنوعی و رگرسیون چند متغیره در پیش بینی درصد پوشش درمنه کوهی از روی برخی خصوصیات خاک
Authors
abstract
similar resources
مقایسه مدلهای شبکه عصبی مصنوعی و رگرسیون چند متغیره در پیشبینی درصد پوشش درمنه کوهی از روی برخی خصوصیات خاک
full text
مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت...
full textمقایسه روشهای نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیشبینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
با توجه به مشکلات اندازهگیری مستقیم برخی از ویژگیهای خاک، در سالهای اخیر از روشهای غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت...
full textمقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods : This cross-sectional study wa...
full textمقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت
در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکههای مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکههای...
full textارزیابی عملکرد مدل های شبکه عصبی مصنوعی، نروفازی و رگرسیون چند متغیره در پیش بینی مقاومت فشاری بتن به کمک روش بارنقطه ای
امروزه تعیین مقاومت بتن درجا مورد توجه میباشد. ضرورت انجام آزمایشات درجا را میتوان در عاملهای مختلفی چون تغییر یا توسعه سازه، بررسی کیفیت، ارزیابی مقاومت و عملکرد بتن جستجو نمود. در این پژوهش عملکرد مدلهای شبکه عصبی مصنوعی، نروفازی تطبیقی و رگرسیون چندمتغیره با هدف سنجش مقاومت فشاری بتن با روش بارنقطهای مورد مطالعه قرار میگیرد. همچنین رابطهای محاسباتی بر اساس روش رگرسیون چندمتغیره برای ...
full textMy Resources
Save resource for easier access later
Journal title:
تحقیقات منابع طبیعی تجدید شوندهPublisher: دانشگاه آزاد اسلامی واحد علوم و تحقیقات
ISSN 2008-9856
volume 5
issue 2 (پیاپی 16 تابستان 1393) 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023